DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE
B.Sc(H) Sem - III , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19

Sub: MATHEMATICS, Course - C5
Full Marks: 10
Time: $\mathbf{3 0 m}$.
Answer any five questions:

1. Prove that $\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}=0$.
2. State and Prove the "Sandwich Theorem" for the limit of the real valued functions and of real variables.
3. Use Taylor's theorem to Prove that $\cos x \geq 1-\frac{x^{2}}{2}$ for $-\pi<x<\pi$.
4. Justify that the function defined by $f(x)=x^{2} \sin \frac{1}{x}, x \neq 0$

$$
=0 \quad, x=0 \text { is differentiable at } x=0 .
$$

5. Expand $f(x)=a^{x}$ in a finite series with Lagrange's form of remainder.
6. Show that in Cauchy's Mean Value Theorem if $f(x)=e^{x} \& g(x)=e^{-x}$ then θ is independent of both x and h. Find the value of θ.
7. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even function and has a derivative at every point, then the derivative f^{\prime} is an odd function.
8. The function defined by $f(0)=0 \& f(x)=0, x \in \mathbb{R} \backslash \mathbb{Q}$

$$
=\frac{1}{q}, x=\frac{p}{q}, q \in \mathbb{N}, p \in \mathbb{Z} \& \operatorname{gcd}(p, q)=1
$$

Show that f is not differentiable at $x=0$.

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc.(H) Sem. - III , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2018-19
 Sub: MATHEMATICS, Course - C5

Full Marks: 10
Answer any five questions:
Time: $\mathbf{3 0} \mathbf{m}$.
$(2 \times 5=10)$

1. Use Taylor's theorem to prove that $\cos x \geq 1-x^{2}$ for $-\pi<x<\pi$.
2. Show that continuity of a function f at a point c is necessary but not sufficient condition for the existence of the derivative of f at c .
3. A function $f: \mathbb{R} \Rightarrow \mathbb{R}$ satisfies the condition $|f(x)-f(y)| \leq(x-y)^{2} \forall x, y \in \mathbb{R}$. Prove that f is a constant function on \mathbb{R}.
4. Prove that the function $(x-1)^{3}+(x-2)^{3}+(x-3)^{3}+\ldots . .+(x-2018)^{3}=0$ has only one real root.
5. Let a function $f:[a, \infty) \rightarrow \mathbb{R}$ be twice differentiable on $[a, \infty)$ and $\exists A, B>0$ such that $|f(x)| \leq A,\left|f^{/ /}(x)\right| \leq$ $B \forall x \in[a, \infty)$. Prove that $\left|f^{\prime}(x)\right| \leq 2 \sqrt{A B} \forall x \in[a, \infty)$.
6. Write down the Maclaurin's theorem related to expansion of functions with Cauchy's form of remainder.
7. Let A and B are subsets of R and $f: A \rightarrow R$ be continuous on A and let $g: B \rightarrow R$ be continuous on B such that $f(A) \subset B$. Prove that the composite function $g_{o} f: A \rightarrow R$ is a continuous function on A. State your comment over the converse of the above result.
8. A function f is defined on R by $f(x)=\left\{\begin{array}{c}\cos \frac{1}{x^{2}}, x \neq 0 \\ 0, x=0\end{array}\right.$. Prove that the function is not continuous at 0 .

DEPT. OF MATHEMATICS
JHARGRAM RAJ COLLEGE
B.Sc(H) Sem - III , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2019-20

Sub: MATHEMATICS, Course - C5
Full Marks: 10
Time: $\mathbf{3 0 m}$.
Answer any five questions:

1. Prove that in a metric space $(X, d)|d(x, y)-d(a, b)| \leq d(a, x)+d(b, y) \forall x, y, a, b \in X$.
2. Prove that $\left(l_{p}, d\right)$ with $p \geq 1$ is a metric space where $d(x, y)=\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}$ where $x=\left\{x_{n}\right\}, y=\left\{y_{n}\right\}$.
3. Prove that every open subset of a discrete metric space is open.
4. Draw $B_{d}((0,0), 1)$ where $d(x, y)=$ maxid $x_{1}-y_{1}\left|,\left|x_{2}-y_{2}\right|\right\}$
where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
5. Let $f:(-1,1) \rightarrow \mathbb{R}$ be continuous at 0.If $f(x)=f\left(x^{2}\right) \forall x \in(-1,1)$. Prove that

$$
f(x)=0 \forall x \in(-1,1) .
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on \mathbb{R}. Prove that for every open subset G of $\mathbb{R} f^{-1}(G)$ is open in \mathbb{R}.
7. Evaluate (i) $\lim _{x \rightarrow 0}\left[\frac{\sin x}{x}\right]$ (ii) $\lim _{x \rightarrow 0} \frac{1}{1+e^{\frac{1}{x}}}$.
8. Prove that the function $f(x)=\frac{1}{x}, x \in(0,1)$ is not uniformly continuous on $(0,1)$.

Full Marks: 10

Answer any five questions:

 \title{Sub: MATHEMATICS, Course - C5
 \title{
Sub: MATHEMATICS, Course - C5
 Time: $\mathbf{3 0} \mathbf{m}$.
 $(2 \times 5=10)$
}

1. Show that the equation $x \ln x=3-x$ has at least one root in $(1,3)$.
2. Is there a function F such that $F^{\prime}(x)=f(x)$ in $[-1,1]$ where $f(x)=\left\{\begin{array}{l}0,-1 \leq x \leq 0 \\ 1,0<x \leq 1\end{array}\right.$
3. Using Maclaurin's series to show that $\sin x>x-\frac{x^{3}}{6}, 0<x<\frac{\pi}{2}$.
4. Using LMVT to prove that $\frac{b-a}{\sqrt{1-a^{2}}}<\sin ^{-1} b-\sin ^{-1} a<\frac{b-a}{\sqrt{1-b^{2}}}, 0<a<b<1$.
5. Prove that f is discontinuous at all irrational points where $f(x)=\left\{\begin{array}{cl}x, & x \in \mathbb{Q} \\ 1-x, & x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$
6. Using $\partial A=\bar{A} \cap \overline{(X \backslash A)}$ Prove that int $A \cup \operatorname{ext} A \cup \partial A=X$.
7. Prove that int A is the largest open set contained in A. Hence prove that interior operator from $P(X)$ to $P(X)$ is an idempotent one.
8. Prove that $\bar{A}=\{x \in X: d(x, A)=0\} \& \operatorname{int}(X \backslash A)=\{x \in X: d(x, A)>0\}$.
