DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT-1st , 2018-19 Sub: MATHEMATICS, Course – C5

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Prove that $\lim_{x\to 0} x \sin \frac{1}{x^2} = 0$.
- 2. State and Prove the "Sandwich Theorem" for the limit of the real valued functions and of real variables.
- 3. Use Taylor's theorem to Prove that $\cos x \ge 1 \frac{x^2}{2}$ for $-\pi < x < \pi$.
- 4. Justify that the function defined by $f(x) = x^2 \sin \frac{1}{x}$, $x \neq 0$

0 , x = 0 is differentiable at x = 0.

- 5. Expand $f(x) = a^x$ in a finite series with Lagrange's form of remainder.
- 6. Show that in Cauchy's Mean Value Theorem if $f(x) = e^x \& g(x) = e^{-x}$ then θ is independent of both *x* and *h*. Find the value of θ .
- 7. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is an even function and has a derivative at every point, then the derivative f' is an odd function.
- 8. The function defined by f(0) = 0 & f(x) = 0, $x \in \mathbb{R} \setminus \mathbb{Q}$ $= \frac{1}{q}, x = \frac{p}{q}, q \in \mathbb{N}, p \in \mathbb{Z} \& \gcd(p, q) = 1$

Show that *f* is not differentiable at x = 0.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc.(H) Sem. – III , INTERNAL ASSESSMENT-2nd , 2018-19 Sub: MATHEMATICS, Course – C5

Full Marks: 10 Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Use Taylor's theorem to prove that $\cos x \ge 1 x^2$ for $-\pi < x < \pi$.
- 2. Show that continuity of a function f at a point c is necessary but not sufficient condition for the existence of the derivative of f at c.
- 3. A function $f: \mathbb{R} \Rightarrow \mathbb{R}$ satisfies the condition $|f(x) f(y)| \le (x y)^2 \forall x, y \in \mathbb{R}$. Prove that f is a constant function on \mathbb{R} .
- 4. Prove that the function $(x 1)^3 + (x 2)^3 + (x 3)^3 + \dots + (x 2018)^3 = 0$ has only one real root.
- 5. Let a function $f:[a,\infty) \to \mathbb{R}$ be twice differentiable on $[a,\infty)$ and $\exists A, B > 0$ such that $|f(x)| \le A$, $|f'/(x)| \le B \quad \forall x \in [a,\infty)$. Prove that $|f'(x)| \le 2\sqrt{AB} \quad \forall x \in [a,\infty)$.
- 6. Write down the Maclaurin's theorem related to expansion of functions with Cauchy's form of remainder.
- 7. Let *A* and *B* are subsets of *R* and $f: A \to R$ be continuous on *A* and let $g: B \to R$ be continuous on *B* such that $f(A) \subset B$. Prove that the composite function $g_o f: A \to R$ is a continuous function on *A*. State your comment over the converse of the above result.
- 8. A function f is defined on R by $f(x) = \begin{cases} \cos \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Prove that the function is not continuous at 0.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT-1st , 2019-20 Sub: MATHEMATICS, Course – C5

Full Marks: 10

Answer any five questions:

Time: 30 m.

 $(2 \times 5 = 10)$

- 1. Prove that in a metric space $(X, d) |d(x, y) d(a, b)| \le d(a, x) + d(b, y) \forall x, y, a, b \in X$.
- 2. Prove that (l_p, d) with $p \ge 1$ is a metric space where $d(x, y) = (\sum_{n=1}^{\infty} |x_n y_n|^p)^{\frac{1}{p}}$ where $x = \{x_n\}, y = \{y_n\}$.

4. Draw $B_d((0,0), 1)$ where $d(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$

where
$$x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$$
.

- 5. Let $f: (-1,1) \to \mathbb{R}$ be continuous at 0. If $f(x) = f(x^2) \forall x \in (-1,1)$. Prove that $f(x) = 0 \forall x \in (-1,1)$.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Prove that for every open subset G of \mathbb{R} $f^{-1}(G)$ is open in \mathbb{R} .

7. Evaluate (i) $\lim_{x\to 0} \left[\frac{\sin x}{x}\right]$ (ii) $\lim_{x\to 0} \frac{1}{1+e^{\frac{1}{x}}}$.

8. Prove that the function $f(x) = \frac{1}{x}$, $x \in (0,1)$ is not uniformly continuous on (0,1).

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc.(H) Sem. – III , INTERNAL ASSESSMENT-2nd , 2019-20 Sub: MATHEMATICS, Course – C5

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Show that the equation $x \ln x = 3 x$ has at least one root in (1,3).
- 2. Is there a function F such that F'(x) = f(x) in [-1,1] where $f(x) = \begin{cases} 0, -1 \le x \le 0\\ 1, 0 < x \le 1. \end{cases}$
- 3. Using Maclaurin's series to show that $\sin x > x \frac{x^3}{6}$, $0 < x < \frac{\pi}{2}$.
- 4. Using LMVT to prove that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$, 0 < a < b < 1.
- 5. Prove that f is discontinuous at all irrational points where $f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 1-x, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$
- 6. Using $\partial A = \overline{A} \cap \overline{(X \setminus A)}$ Prove that int $A \cup ext A \cup \partial A = X$.
- 7. Prove that *int* A is the largest open set contained in A. Hence prove that interior operator from P(X) to P(X) is an idempotent one.
- 8. Prove that $\overline{A} = \{x \in X : d(x, A) = 0\}$ & $int(X \setminus A) = \{x \in X : d(x, A) > 0\}$.